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Overview

Timeline
 Start: 2012
 End: 2016

Barriers
Development of a PHEV and EV 
batteries that meet or exceed 
DOE/USABC goals
A. Cost 
C. Performance

Chemical Sciences and Engineering Division, Argonne National Laboratory; www.cse.anl.gov/batpac
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 Budget
 FY14: 575K
 FY15: 575K

Collaborators
 U.S. Environmental Protection 

Agency
 B&W MEGTEC, GM, LGChem, PPG
 3M, Amprius, Envia



Relevance

 This modeling effort supports projects through the 
development and utilization of efficient simulation, analysis, 
and design tools for advanced lithium ion battery technologies. 

 This project provides assessment of the technology 
developments through projections of cost and performance at 
the pack level

 The EPA uses BatPaC to predict the cost of battery 
technologies for their 2017-2025 rule making

• Argonne updates BatPaC with cost inputs, modification of 
constraints, allow variable factory utilization, etc. 

 BatPaC is the only peer-reviewed LIB design and cost model 
available in the public domain
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Objectives and Approach
Objective: Develop and utilize efficient simulation and design 
tools for Li-ion batteries to predict:

– Precise overall and component mass and dimensions
– Cost and performance characteristics
– Battery pack values from bench-scale results

Approach: Design a battery based on power and energy 
requirements for a specific cell chemistry, feeding into a cost 
calculation that accounts for materials and processes required

– Optimized battery design to meet the specifications
– Cost based on a described manufacturing process

Approach: Reduce uncertainty in model predictions
– Update the default material and processing costs
– Develop higher fidelity models of the physical and electrochemical 

phenomenon, and manufacturing flow path (quantify energy needs)
– Validate results with OEMS, manufacturers, component developers
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BatPaC designs the battery and calculates its mass, 
volume, materials, heat transfer needs, and cost

Chemical Sciences and Engineering Division, Argonne National Laboratory
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Battery Pack
Components

• Volume

• Mass

• Materials

• Heat generation

Iterate Over Governing Eqs.
& Key Design Constraints

• Cell, module, & pack format

• Maximum electrode thickness

• Fraction of OCV at rated power
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Technical Accomplishments and Progress 
A new version (3B) of BatPaC has been released

 Added a table of results corresponding to USABC format
– Updated thermal management calculations
– Provided rapid gas discharge pathway from modules
– Reconfigured to enable cell cost calculations

 Updated costs of LFP cathode, current collectors, separator, 
and electrolyte

 Expect to release a newer version later this year
– Developing understanding of uncertainties

• Electrode thickness limitation, cathode material cost, etc.

6

Milestone: Release new BatPaC version, Q2-FY15. 
– Status: Completed
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Technical Accomplishments and Progress 
Improved optimal electrode loading calculation

 Electrode loading key design & cost uncertainty
 Higher mAh/cm2 reduces cost and increases Wh/L
 Key factor to quantify benefit of new materials
 Previously set thickness to minimum of two calcs

– Thickness needed to meet pulse power requirement
– Maximum thickness limit (100 um)

 New approach uses
– Continuous power demand
– Electrolyte transport limitations
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Characteristic length for electrolyte transport 
key to calculating optimal electrode loading

 Concentration gradients 
limit utilization of 
electrode capacity
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Designing maximum electrode loading by rate 
required for constant discharge
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Continuous 
C-rate

Design capacity, 
mAh/cm2

C/5 4.8
C/3 3.8
C/2 3.1
1C 2.1
2C 1.5
3C 1.25

For these tested electrodes
NMC622/Graphite (closed symbols)

Lines of γ = 
0.3, 0.6 & 0.9

Designs should target electrode 
thicknesses of  ~0.3L* or less at 
required C-rateOpen symbols transformed from: Zheng et al Electrochim. 

Acta 71 (2012) 258 [blue LFP/Gr & red NMC333/Gr]



New methodology accurately reflects transport 
limitations – thinner electrodes for most designs
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Technical Accomplishments and Progress 
Material requirements to meet USABC EV targets

 Researchers require translation of pack level targets 
to materials level requirements

 Priority research directions require quantitative 
connection to real world values

 Primary focus of calculations will be on cost
– Pack mass and volume show same trend (both decrease 

with decreasing cost)
– Volume target is most challenging to meet (500 Whuse/L)
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Advanced anodes should target >1000 mAh/cm3

 Pack level benefits reach diminishing returns after 
1000 mAh/cm3 for both cost and energy density
 mAh/cm3= ρ·ε·Q [ g/cm3

act · cm3
act/cm3

elect · mAh/g]

 Silicon with <75 wt% graphite can achieve target

12
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45 kWhuse, 90 kW 360 V
$20/kg 200 mAh/g NMC cathode

$50/kg

$25/kg

$15/kg

Wh/L including 
foam between 
cells 2x volume 
expansion

Electrode volumetric capacity uses lithiated
basis Li4.4Si or Li4.4Sn and maximum active 
material volume fraction of 65%

Anode cost



 Cathode requirements 
challenging to meet 
USABC pack level targets

 >900 Wh/kgcathode (vs Li) 
(>600 mAh/cm3) required 
when paired with Si 
composite anode

 Material cost target is 
consistent with Mn-rich 
compositions

Advanced cathodes should target >900 Wh/kgcath

13
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Cathodes that result in $125/kWhuse
45 kWhuse battery packs



 Cathode remains largest savings opportunity
 Advanced anodes save 37% volume and 25% cost

Performance gains resulting from advanced anodes 
and high voltage NMC cathode

14
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90%
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Technical Accomplishments and Progress 
Comparison with Beyond Li-ion Possibilities

 Intercalation hosts used in Li-ion provide competitive 
energy densities at the expense of mass

 Successful development of Li-metal would benefit Li-
ion as well as Li/S

 Li/S key challenges to be addressed
– New electrolytes that do not require large excesses (unlike DME:DOL)
– Reversible and stable Li-metal electrode (LiySi does not show synergy)
– High electrode loadings to reduce inactive materials burden

15
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*Beyond Lithium-ion based calculations are supported as part 
of the Joint Center for Energy Storage Research, an Energy 
Innovation Hub funded by the U.S. Department of Energy, 
Office of Science, Basic Energy Sciences. 



Sulfur cathodes similar to oxide cathodes in Wh/L 
and cost if Li and new electrolyte implemented

 Current sulfur batteries use excess electrolyte (10 vs 1 
mL/gS target) to achieve long cycling in DME:DOL

 Cost dominated by Li-metal and inactive materials
– Benefits only if high loadings can be achieved
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Gr-NMC333

100 kWhuse, 80 kW, 360 V



Collaboration

 Support EPA in using BatPaC for regulatory analysis
– Updated the model in response to peer review and state-of-the-

art in battery manufacturing and pack design
– EPA has adopted BatPaC for determining cost of LIB in hybrid and 

electric vehicle applications
– Share incremental improvements in BatPaC capabilities

 Project impact of improved components from DOE funded 
developers (3M, Amprius, Envia)

 Validate design model results with GM model/experience
 Develop and validate NMP recovery process: B&W MEGTEC
 Work with ANL CAMP facility for materials validation & testing
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Proposed Future Work

 Study upstream processes and steps in the battery plant to 
bring greater fidelity in energy and cost estimates
– Update optimum electrode thickness calculation
– Complete the cost calculations for the NMP recovery, dry room, and 

cathode development
– Update BatPaC cost estimates based on supporting models 
– Include cathode material production processes
– Explore the energy demands of other steps in the manufacturing 

process, e.g., electrode coating, formation cycling, etc.

 Include volume expansion mitigation designs (foam or springs, etc)
 Incorporate use of a blended cathode in the model
 Support EPA calculations 
 Evaluate fast charging of EV batteries

18
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Summary

 The BatPaC spreadsheet model is a resource for DOE, EPA, 
and technology developers
– Projection to the pack level performance helps understand the impact 

of component technology

Accomplishments
 A new version of BatPaC has been released 

– Another update due in 2015.

 Improved electrode loading sizing calculation
 Translated USABC Pack goals to materials level requirements
 Compared advanced Li-ion to beyond Li-ion Li/S chemistry

19
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Technical Backup Slides
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Characteristic length for electrolyte transport 
key to calculating optimal electrode loading

22
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Measuring rate capability as a function of electrode 
loading – towards thick electrodes
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• Full-cell, single-layer 14 cm2

pouch-cells (NMC622/Graphite)
• Discharge capacity as a function of 

increasing C-rate
• Thinner electrodes can utilize 

higher C-rates
• How do we predict the fall off 

point for thicker electrodes?
• How does one design the highest 

electrode loading for an expected 
discharge rate?
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